1h.
$\sqrt{x+1}+\sqrt{4-x}+\sqrt{(x+1)(4-x)}≥5$
ĐK: $\left\{ \begin{array}{l}x+1≥0\\4-x≥0\end{array} \right.$
$\Leftrightarrow \left\{ \begin{array}{l}x≥-1\\x≤4\end{array} \right.$
$\Leftrightarrow -1≤x≤4$
Đặt $t=\sqrt{x+1}+\sqrt{4-x} (t≥0)$
$\Rightarrow t^2=x+1+2\sqrt{(x+1)(4-x)}+4-x$
$\Rightarrow t^2=5+2\sqrt{(x+1)(4-x)}$
$\Rightarrow \dfrac{t^2-5}{2}=\sqrt{(x+1)(4-x)}$
$pt \Rightarrow \dfrac{t^2-5}{2}+t-5≥0$
$\Leftrightarrow t^2+2t-15 ≥0$
$\Leftrightarrow t ≤ -5$ hay $t≥3$
So với ĐK: $\Rightarrow t≥3$
Xét $t≥3:$
$\Leftrightarrow 5+2\sqrt{(x+1)(4-x)}≥9$
$\Leftrightarrow \sqrt{-x^2+3x+4}≥2$
$\Leftrightarrow \left\{ \begin{array}{l}2≤0(sai)\\-x^2+3x+4≥0\end{array} \right.$ hay $ \left\{ \begin{array}{l}2≥0(ld)\\-x^2+3x≥0\end{array} \right. $
$\Leftrightarrow \left\{ \begin{array}{l}2≤0(sai)\\-1≤x≤4\end{array} \right. $ hay $ \left\{ \begin{array}{l}2≥0(ld)\\0≤x≤3\end{array} \right. $
So với ĐK:
$\Rightarrow 0≤x≤3$ thoả ycbt