Đáp án:
a) Ta thấy:
$\begin{array}{l}
\dfrac{{OA}}{{OC}} = \dfrac{8}{6} = \dfrac{4}{3}\\
\dfrac{{OB}}{{OD}} = \dfrac{4}{3}\\
\Rightarrow \dfrac{{OA}}{{OC}} = \dfrac{{OB}}{{OD}}
\end{array}$
Xét: ΔOAB và ΔOCD có:
+ góc O chung
+ OA/OC = OB/OD
=>ΔOAB ~ ΔOCD (c-g-c)
b)
$\begin{array}{l}
Do:\Delta OAB \sim \Delta OCD\\
\Rightarrow \dfrac{{OA}}{{OC}} = \dfrac{{OB}}{{OD}} = \dfrac{{AB}}{{CD}}\\
\Rightarrow OA.CD = OC.AB
\end{array}$
c)
$\begin{array}{l}
Do:\Delta OAB \sim \Delta OCD\\
\Rightarrow \dfrac{{{C_{OAB}}}}{{{C_{OCD}}}} = \dfrac{{OA}}{{OC}} = \dfrac{{OB}}{{OD}} = \dfrac{{AB}}{{CD}} = \dfrac{4}{3}\\
Do:{C_{OAB}} + {C_{OCD}} = 38,5\\
\Rightarrow \left\{ \begin{array}{l}
{C_{OAB}} = \dfrac{{38,5}}{7}.4 = 22\left( {cm} \right)\\
{C_{OCD}} = 16,5\left( {cm} \right)
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
AB = 22 - OA - OB = 10\left( {cm} \right)\\
CD = 16,5 - OC - OD = 7,5\left( {cm} \right)
\end{array} \right.
\end{array}$