Đáp án:
b) $\left( {SI,\left( {ABCD} \right)} \right) = \arctan \left( {\dfrac{3}{{\sqrt {10} }}} \right)$
Giải thích các bước giải:
Kẻ $AE\bot BP=E; AH\bot SE=H$
a) Ta có:
$\left\{ \begin{array}{l}
\left( {SAB} \right) \cap \left( {SAD} \right) = SA\\
\left( {SAB} \right) \bot \left( {ABCD} \right)\\
\left( {SAD} \right) \bot \left( {ABCD} \right)
\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)$
b) Ta có:
$\dfrac{{AI}}{{CI}} = \dfrac{{AB}}{{CP}} = 2 \Rightarrow d\left( {A,\left( {SBP} \right)} \right) = 2d\left( {C,\left( {SBP} \right)} \right) \Rightarrow d\left( {A,\left( {SBP} \right)} \right) = a$
Lại có:
$\begin{array}{l}
\left\{ \begin{array}{l}
AE \bot BP\\
SA \bot BP
\end{array} \right. \Rightarrow BP \bot \left( {SAE} \right) \Rightarrow BP \bot AH\\
\left\{ \begin{array}{l}
AH \bot BP\\
AH \bot SE
\end{array} \right. \Rightarrow AH \bot \left( {SBP} \right)
\end{array}$
$ \Rightarrow H$ là hình chiếu của $A $ trên $SE$
$ \Rightarrow d\left( {A,\left( {SBP} \right)} \right) = AH \Rightarrow AH = a$
Ta có:
$\begin{array}{l}
\widehat {ABE} = \widehat {CPB}\left( {slt} \right) \Rightarrow \sin \widehat {ABE} = \sin \widehat {CPB} = \dfrac{{CB}}{{BP}} = \dfrac{{CB}}{{\sqrt {B{C^2} + C{P^2}} }} = \dfrac{a}{{\sqrt {{a^2} + {a^2}} }} = \dfrac{1}{{\sqrt 2 }}\\
\Delta ABE;\widehat {AEB} = {90^0};\sin \widehat {ABE} = \dfrac{1}{{\sqrt 2 }}\\
\Rightarrow AE = AB.\sin \widehat {ABE} = 2a.\dfrac{1}{{\sqrt 2 }} = a\sqrt 2
\end{array}$
Xét $\begin{array}{l}
\Delta SAE;\widehat {SAE} = {90^0};AH \bot SE = H;AE = a\sqrt 2 ;AH = a\\
\Rightarrow \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{E^2}}} \Rightarrow \dfrac{1}{{S{A^2}}} = \dfrac{1}{{{a^2}}} - \dfrac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} = \dfrac{1}{{2{a^2}}} \Rightarrow SA = a\sqrt 2
\end{array}$
Ta có:
$SA\bot (ABCD)$$\to A$ là hình chiếu của $S$ trên $(ABCD)$
$ \Rightarrow \left( {SI,\left( {ABCD} \right)} \right) = \left( {SI,AI} \right) = \widehat {SIA}$
$\Delta ABC;\widehat {ABC} = {90^0},AI = \dfrac{2}{3}AC = \dfrac{2}{3}\sqrt {A{B^2} + B{C^2}} = \dfrac{2}{3}\sqrt {{{\left( {2a} \right)}^2} + {a^2}} = \dfrac{{2a\sqrt 5 }}{3}$
Xét $\begin{array}{l}
\Delta SAI;\widehat {SAI} = {90^0};SA = a\sqrt 2 ;AI = \dfrac{{2a\sqrt 5 }}{3}\\
\Rightarrow \tan \widehat {SAI} = \dfrac{{SA}}{{AI}} = \dfrac{{a\sqrt 2 }}{{\dfrac{{2a\sqrt 5 }}{3}}} = \dfrac{3}{{\sqrt {10} }}\\
\Rightarrow \widehat {SAI} = \arctan \left( {\dfrac{3}{{\sqrt {10} }}} \right)\\
\Rightarrow \left( {SI,\left( {ABCD} \right)} \right) = \arctan \left( {\dfrac{3}{{\sqrt {10} }}} \right)
\end{array}$
Vậy $\left( {SI,\left( {ABCD} \right)} \right) = \arctan \left( {\dfrac{3}{{\sqrt {10} }}} \right)$