a,
$\Delta$ ABC vuông tại A có $\widehat{ABC}=90^o-\widehat{HCA}$
$\Delta$ HAC vuông tại H có $\widehat{HAC}=90^o-\widehat{HCA}$
$\Rightarrow \widehat{ABC}=\widehat{HAC}$
b,
$\Delta$ ABD và $\Delta$ HBE có:
$\widehat{BAD}=\widehat{BHE}=90^o$
$\widehat{ABD}=\widehat{HBE}$
$\Rightarrow \Delta$ ABD $\backsim$ $\Delta$ HBE (g.g)
$\Rightarrow \frac{BD}{AD}=\frac{BE}{EH}$
$\Leftrightarrow BD.HE=BE.AD$
c,
$BC=\sqrt{3^2+4^2}=5cm$
$\Delta$ BHA và $\Delta$ BAC có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^o$
$\Rightarrow \Delta$ BHA $\backsim$ $\Delta$ BAC (g.g)
$\Rightarrow \frac{AH}{AB}=\frac{AC}{BC}$
$\Rightarrow AH=\frac{3.4}{5}=2,4cm$
$\Rightarrow BH=\sqrt{3^2-2,4^2}=1,8cm$
$\Delta$ ABH, BE phân giác.
$\Rightarrow \frac{AB}{AE}=\frac{BH}{EH}=\frac{AB+BH}{AE+EH}=\frac{3+1,8}{2,4}=2$
$\Rightarrow AE=\frac{AB}{2}=1,5cm$