Với n=2 thì thỏa mãn điều kiện đề bài
Giả sử bài toán đúng với n=k,ta chứng minh bài toán đúng với n=k+1
+)Nếu không có 2 điểm nào nối với nhau ta đc đpcm
+)Nếu tồn tại 2 điểm A,B nối với nhau ta được đoạn AB
Gọi 2k+2 điểm đó là $X_1,X_2,...,X_{2k},A,B$
Theo n=k đúng nên trong 2k điểm $X_1,X_2,...,X_{2k}$ thì có tối đa $k^2$ đoạn thẳng
Theo điều kiện thứ 2 của đề bài thì cả 2 điểm A,B tạo với 2k điểm $X_1,X_2,...,X_{2k}$ tối đa là 2k đoạn thẳng
Cộng thêm đoạn AB thì số đoạn thẳng tối đa tạo được là :$k^2+2k+1=(k+1)^2$$=>$nguyên lí quy nạp đã được chứng minh
Do đó ta thu được tối đa $n^2$ đoạn thẳng
Đây là đề toán chuyên KHTN đợt 2 năm 2018 đúng ko? :)))
Dù sao thì cx cho mk CTLHN nha!