Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
{x^4}{y^4} + 4 = \left( {{x^4}{y^4} + 4{x^2}{y^2} + 4} \right) - 4{x^2}{y^2}\\
= {\left( {{x^2}{y^2} + 2} \right)^2} - {\left( {2xy} \right)^2}\\
= \left( {{x^2}{y^2} + 2 - 2xy} \right)\left( {{x^2}{y^2} + 2 + 2xy} \right)\\
b,\\
4{x^4} + 1 = \left( {4{x^4} + 4{x^2} + 1} \right) - 4{x^2}\\
= {\left( {2{x^2} + 1} \right)^2} - {\left( {2x} \right)^2}\\
= \left( {2{x^2} + 1 - 2x} \right)\left( {2{x^2} + 1 + 2x} \right)\\
c,\\
64{x^4} + 1 = \left( {64{x^4} + 16{x^2} + 1} \right) - 16{x^2}\\
= {\left( {8{x^2} + 1} \right)^2} - {\left( {4x} \right)^2}\\
= \left( {8{x^2} + 1 - 4x} \right)\left( {8{x^2} + 1 + 4x} \right)\\
d,\\
{x^4} + 64\\
= \left( {{x^4} + 16{x^2} + 64} \right) - 16{x^2}\\
= {\left( {{x^2} + 8} \right)^2} - {\left( {4x} \right)^2}\\
= \left( {{x^2} + 8 - 4x} \right)\left( {{x^2} + 8 + 4x} \right)\\
e,\\
16{x^4}\left( {x - y} \right) - x + y\\
= 16{x^4}\left( {x - y} \right) - \left( {x - y} \right)\\
= \left( {x - y} \right)\left( {16{x^4} - 1} \right)\\
= \left( {x - y} \right)\left( {4{x^2} - 1} \right)\left( {4{x^2} + 1} \right)\\
= \left( {x - y} \right)\left( {2x - 1} \right)\left( {2x + 1} \right)\left( {4{x^2} + 1} \right)\\
f,\\
2{x^3}y - 2x{y^3} - 4x{y^2} - 2xy\\
= 2xy\left( {{x^2} - {y^2} - 2y - 1} \right)\\
= 2xy.\left[ {{x^2} - \left( {{y^2} + 2y + 1} \right)} \right]\\
= 2xy.\left[ {{x^2} - {{\left( {y + 1} \right)}^2}} \right]\\
= 2xy\left( {x + y + 1} \right)\left( {x - y - 1} \right)\\
g,\\
x\left( {{y^2} - {z^2}} \right) + y\left( {{z^2} - {x^2}} \right) + z\left( {{x^2} - {y^2}} \right)\\
= x\left( {y - z} \right)\left( {y + z} \right) + y{z^2} - y{x^2} + z{x^2} - z{y^2}\\
= x\left( {y - z} \right)\left( {y + z} \right) + yz\left( {z - y} \right) - {x^2}\left( {y - z} \right)\\
= \left( {y - z} \right)\left( {xy + xz - yz - {x^2}} \right)\\
= \left( {y - z} \right)\left[ {y\left( {x - z} \right) + x\left( {z - x} \right)} \right]\\
= \left( {y - z} \right)\left( {x - z} \right)\left( {y - x} \right)\\
h,\\
16{x^3} - 54{y^3}\\
= 2\left( {8{x^3} - 27{y^3}} \right)\\
= 2.\left( {2x - 3y} \right)\left( {4{x^2} + 6xy + 9{y^2}} \right)\\
i,\\
5{x^2} - 5{y^2} = 5\left( {{x^2} - {y^2}} \right) = 5\left( {x - y} \right)\left( {x + y} \right)\\
k,\\
16{x^3}y + \frac{1}{4}y{z^3}\\
= \frac{1}{4}y\left( {64{x^3} + {z^3}} \right)\\
= \frac{1}{4}y.\left( {4x + z} \right)\left( {16{x^2} - 4xz + {z^2}} \right)\\
l,\\
2{x^4} - 32 = 2.\left( {{x^4} - 16} \right) = 2.\left( {{x^2} - 4} \right)\left( {{x^2} + 4} \right) = 2\left( {x - 2} \right)\left( {x + 2} \right)\left( {{x^2} + 4} \right)
\end{array}\)