Đáp án:
1,(2x-8)(2x+8)=0
<=>\(\left[ \begin{array}{l}2x-8=0\\2x+8=0\end{array} \right.\)
<=>\(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\)
2,$x^{2}$+6x+9=4
$x^{2}$+6x=-5
$x^{2}$+6x+5=0
$x^{2}$+x+5x+5=0
x(x+1)+5(x+1)=0
(x+1)(x+5)=0
\(\left[ \begin{array}{l}x+1=0\\x+5=0\end{array} \right.\)
\(\left[ \begin{array}{l}x=-1\\x=-5\end{array} \right.\)
3,
,$x^{2}$-14x+49=36
$x^{2}$-14x=-13
$x^{2}$-14+13=0
$x^{2}$-x-13x+13=0
x(x-1)-13(x-1)=0
(x-1)(x-13)=0
\(\left[ \begin{array}{l}x-1=0\\x-13=0\end{array} \right.\)
\(\left[ \begin{array}{l}x=1\\x=13\end{array} \right.\)
4,
$x^{2}$+3x+3x+9=0
(x+3)(x+3)=0
\(\left[ \begin{array}{l}x+3=0\\x+3=0\end{array} \right.\)
\(\left[ \begin{array}{l}x=-3\\x=-3\end{array} \right.\)
5,
$x^{2}$-7x-7x+49=0
(x-7)(x-7)=0
\(\left[ \begin{array}{l}x-7=0\\x-7=0\end{array} \right.\)
\(\left[ \begin{array}{l}x=7\\x=7\end{array} \right.\)
6.x3−6x2+15x−8=06.x3−6x2+15x−8=0
(x−2)2=0<=>(x−2)2=0
x−2=0<=>x−2=0
x=2<=>x=2
7.x3−9x2+17x−27=07.x3−9x2+17x−27=0
(x−3)3=0<=>(x−3)3=0
x−3=0<=>x−3=0
x=3