TL:
$G = 2016^2 - 2015^2 + 2014^2 - 2013 ^2 + 2012^2 - 2011^2 + 2^2 - 1^2$
$( 2016 - 2015 )( 2016 + 2015)+(2014-2013)(2014+2013)+( 2-12-2011)(2012+2011)+3 = 4031 + 4027 + 4023 + 3 = 12084$
h)$M-N= 99^2 - 98^2 + 97^2 - 96^2 + 95^2 - ... + 3^2 - 2^2 + 1 $
$M-N=(99-98)(99+98)+...+(3-2)(3+2)+1$
$M-N= 99 = 98 + 97 + ... + 5 + 4 + 3 + 2 + 1 -9$
$M-N= $ $\frac{99+1}{2}-9 = 4941 => M - N + 50 = 4991 $