`\frac{2(x-1)}{x}=1+\frac{2}{x(x-1)}` `(x ne 0; x ne 1)`
`⇔\frac{2(x-1)}{x}-1-\frac{2}{x(x-1)}=0`
`⇔\frac{2(x-1)^2-x(x-1)-2}{x(x-1)}=0`
`⇔\frac{2(x^2-2x+1)-x^2+x-2}{x(x-1)}=0`
`⇔\frac{2x^2-4x+2-x^2+x-2}{x(x-1)}=0`
`⇔\frac{x^2-3x}{x(x-1)}=0`
`⇒x^2-3x=0`
`⇔x(x-3)=0`
`⇔` \(\left[ \begin{array}{l}x=0\\x-3=0\end{array} \right.\) `⇔` \(\left[ \begin{array}{l}x=0(ktm)\\x=3(tm)\end{array} \right.\)