a) $\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}$
$\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0$
$(x+1).(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}=0$
$⇒x+1=0$
$⇒x=-1$
b) $\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}$
$\dfrac{x+4}{2000}+\dfrac{x+3}{2001}-\dfrac{x+2}{2002}-\dfrac{x+1}{2003}=0$
$(\dfrac{x+4}{2000}+1)+(\dfrac{x+3}{2001}+1)-(\dfrac{x+2}{2002}+1)-(\dfrac{x+1}{2003}+1)=0$
$\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0$
$(x+2004).(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}=0$
$⇒x+2004=0$
$⇒x=-2004$