$A = (\tan x + \cot x)^2 - (\tan x - \cot x)^2$
$= \tan^2 x + 2\tan x . \cot x + \cot^2 x - \tan^2 x + 2\tan x . \cot x - \cot^2 x$
$= 4\tan x . \cot x$
$= 4.1$
$= 1$
$B = 2\cos^4 x - \sin^4 x +\sin^2 x . \cos^2 x + 3\sin^2 x$
$= (\cos^4 x - \sin^4 x) + (\cos^4 x + \sin^2 x . \cos^2 x) + 3\sin^2 x$
$=(\cos^2 x - \sin^2 x)(\cos^2 x + \sin^2 x) + \cos^2 x (\cos^2 x + \sin^2 x) + 3\sin^2 x$
$=1.(\cos^2 x - \sin^2 x) + 1.\cos^2 x + 3\sin^2 x$
$=\cos^2 x - \sin^2 x + \cos^2 x + 3\sin^2 x$
$=2(\cos^2 x + \sin^2 x)$
$=2.1$
$=2$