Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
A = \dfrac{{\sqrt a + \sqrt b }}{{\sqrt a - \sqrt b }} - \dfrac{{\sqrt a - \sqrt b }}{{\sqrt a + \sqrt b }} = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2} - {{\left( {\sqrt a - \sqrt b } \right)}^2}}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}\\
= \dfrac{{\left( {a + 2\sqrt {ab} + b} \right) - \left( {a - 2\sqrt {ab} + b} \right)}}{{a - b}} = \dfrac{{4\sqrt {ab} }}{{a - b}}\\
B = \dfrac{{a - b}}{{\sqrt a - \sqrt b }} - \dfrac{{\sqrt {{a^3}} - \sqrt {{b^3}} }}{{a - b}}\\
= \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{\sqrt a - \sqrt b }} - \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {a + \sqrt {ab} + b} \right)}}{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}\\
= \left( {\sqrt a + \sqrt b } \right) - \dfrac{{a + \sqrt {ab} + b}}{{\sqrt a + \sqrt b }}\\
= \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2} - \left( {a + \sqrt {ab} + b} \right)}}{{\sqrt a + \sqrt b }}\\
= \dfrac{{\left( {a + 2\sqrt {ab} + b} \right) - \left( {a + \sqrt {ab} + b} \right)}}{{\sqrt a + \sqrt b }}\\
= \dfrac{{\sqrt {ab} }}{{\sqrt a + \sqrt b }}\\
C = \left( {\dfrac{{\sqrt {{x^3}} + \sqrt {{y^3}} }}{{\sqrt x + \sqrt y }} - \sqrt {xy} } \right).\left( {\dfrac{{\sqrt x + \sqrt y }}{{x - y}}} \right)\\
= \left( {\dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \sqrt {xy} } \right).\dfrac{{\sqrt x + \sqrt y }}{{\left( {\sqrt x - \sqrt y } \right)\left( {\sqrt x + \sqrt y } \right)}}\\
= \left( {x - \sqrt {xy} + y - \sqrt {xy} } \right).\dfrac{1}{{\sqrt x - \sqrt y }}\\
= \left( {x - 2\sqrt {xy} + y} \right).\dfrac{1}{{\sqrt x - \sqrt y }}\\
= {\left( {\sqrt x - \sqrt y } \right)^2}.\dfrac{1}{{\sqrt x - \sqrt y }}\\
= \sqrt x - \sqrt y \\
E = \dfrac{{a + b - 2\sqrt {ab} }}{{\sqrt a - \sqrt b }}:\dfrac{1}{{\sqrt a + \sqrt b }}\\
= \dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2}}}{{\sqrt a - \sqrt b }}.\left( {\sqrt a + \sqrt b } \right)\\
= \left( {\sqrt a - \sqrt b } \right).\left( {\sqrt a + \sqrt b } \right)\\
= a - b\\
G = \dfrac{{a - 3\sqrt a }}{{\sqrt a - 3}} - \dfrac{{a + 4\sqrt a + 3}}{{\sqrt a + 3}}\\
= \dfrac{{\sqrt a .\left( {\sqrt a - 3} \right)}}{{\sqrt a - 3}} - \dfrac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a + 3} \right)}}{{\sqrt a + 3}}\\
= \sqrt a - \left( {\sqrt a + 1} \right)\\
= - 1\\
H = \dfrac{{9 - x}}{{\sqrt x + 3}} - \dfrac{{9 - 6\sqrt x + x}}{{\sqrt x - 3}} - 6\\
= \dfrac{{\left( {3 - \sqrt x } \right)\left( {3 + \sqrt x } \right)}}{{\sqrt x + 3}} - \dfrac{{{{\left( {\sqrt x - 3} \right)}^2}}}{{\sqrt x - 3}} - 6\\
= \left( {3 - \sqrt x } \right) - \left( {\sqrt x - 3} \right) - 6\\
= 6 - 2\sqrt x - 6\\
= - 2\sqrt x
\end{array}\)