Đáp án:
Giải thích các bước giải:
$a,(2x^4-5x^2+x^3-3-3x):(x^2-3)$
$=(2x^4+x^2-6x^2+x^3-3-3x):(x^2-3)$
$=[(2x^4+x^3+x^2)-(6x^2+3x+3)]:(x^2-3)$
$=[x^2(2x^2+x+1)-3(2x^2+x+1)]:(x^2-3)$
$=(x^2-3)(2x^2+x+1):(x^2-3)$
$=2x^2+x+1$
$b,(x^5+x^3+x^2+1):(x^3+1)$
$=[(x^2(x^3+1)+(x^3+1)]:(x^3+1)$
$=(x^2+1)(x^3+1):(x^3+1)$
$=x^2+1$
$c,(2x^3 + 5x^2 – 2x + 3) : (2x^2 – x + 1)\\ = 2x^3 + 6x^2 - x^2 - 3x + x + 3 : 2x^2 - x + 1\\ = 2x^2(x + 3) - x(x + 3) + x + 3 : 2x^2 - x + 1\\ = (x + 3)(2x^2 - x + 1) : 2x^2 - x + 1\\ = x + 3$