Đáp án:
Giải thích các bước giải:
$19.2x(x+3)-3x^2(x+2)+x(3x^2+4x-6)$
$=2x^2+6x-3x^3-6x^2+3x^3+4x^2-6x$
$=0$
$20.3x(2x^2-x)-2x^2(3x+1)+5(x^2-1)$
$=6x^3-3x^2-6x^3-2x^2+5x^2-5$
$=-5$
$21.4(x-6)-x^2(3x+2)+x(5x-4)+3x^2(x-1)$
$=4x-24-3x^3-2x^2+5x^2-4x+3x^3-3x^2$
$=-24$
$22.xy(3x^2-6xy)-3(x^3y-2x^2y^2-1)$
$=3x^3y-6x^2y^2-3x^3y+6x^2y^2+3$
$=3$
$23.3x^2-3x(x-2)=36$
$⇔3x^2-3x^2+6x=36$
$⇔6x=36$
$⇔x=6$
$24.6x(x-4)+2x(2-3x)=-25$
$⇔6x^2-24x+4x-6x^2=-25$
$⇔-20x=-25$
$⇔x=\dfrac{5}{4}$
$25.5x^2(3x-2)-3x^2(5x+2)+2x(3+8x)=21$
$⇔15x^3-10x^2-15x^3-6x^2+6x+16x^2=21$
$⇔6x=21$
$⇔x=\dfrac{7}{2}$
$26.5x(4x^2-2x+1)-2x(10x^2-5x-2)=-36$
$⇔20x^3-10x^2+5x-20x^3+10x^2+4x=-36$
$⇔9x=-36$
$⇔x=-4$