Đáp án: `B` $\vdots$ `5 ; 21 ; 85`
Giải thích các bước giải:
`+) B = 4 + 4^2 + 4^3 + 4^4 + ... + 4^2016`
`= (4 + 4^2) + (4^3 + 4^4) + ... + (4^2015 + 4^2016)`
`= 4(1 + 4) + 4^3(1 + 4) + ... + 4^2015(1 + 4)`
`= 4 . 5 + 4^3 . 5 + ... + 4^2015 . 5`
`= (4 + 4^3 + ... + 4^2015) . 5` $\vdots$ `5` `(đpcm)`
`+) B = 4 + 4^2 + 4^3 + 4^4 + ... + 4^2016`
`= (4 + 4^2 + 4^3) + (4^4 + 4^5 + 4^6) + ... + (4^2014 + 4^2015 + 4^2016)`
`= 4(1 + 4 + 4^2) + 4^4(1 + 4 + 4^2) + ... + 4^2014(1 + 4 + 4^2)`
`= 4 . 21 + 4^4 . 21 + ... + 4^2014 . 21`
`= (4 + 4^4 + ... + 4^2014) . 21` $\vdots$ `21` `(đpcm)`
`+) B = 4 + 4^2 + 4^3 + 4^4 + ... + 4^2016`
`= (4 + 4^2 + 4^3 + 4^4) + ... + (4^2013 + 4^2014 + 4^2015 + 4^2016)`
`= 4(1 + 4 + 4^2 + 4^3) + ... + 4^2013(1 + 4 + 4^2 + 4^3)`
`= 4 . 85 + ... + 4^2013 . 85`
`= (4 + ... + 4^2013) . 85` $\vdots$ `85` `(đpcm)`