Đáp án:
$\begin{array}{l}
B2)\\
a)Dkxd:x \ge 0;x \ne 1\\
A = \dfrac{{15\sqrt x - 11}}{{x + 2\sqrt x - 3}} + \dfrac{{3\sqrt x - 2}}{{1 - \sqrt x }} - \dfrac{{2\sqrt x + 3}}{{\sqrt x + 3}}\\
= \dfrac{{15\sqrt x - 11 - \left( {3\sqrt x - 2} \right)\left( {\sqrt x + 3} \right) - \left( {2\sqrt x + 3} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{15\sqrt x - 11 - 3x - 7\sqrt x + 6 - 2x - \sqrt x + 3}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{ - 5x + 7\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{ - \left( {\sqrt x - 1} \right)\left( {5\sqrt x - 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}}\\
b)A = \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}}\\
= \dfrac{{ - 5\sqrt x - 15 + 17}}{{\sqrt x + 3}}\\
= - 5 + \dfrac{{17}}{{\sqrt x + 3}}\\
Do:\sqrt x + 3 \ge 3\\
\Rightarrow \dfrac{1}{{\sqrt x + 3}} \le \dfrac{1}{3}\\
\Rightarrow \dfrac{{17}}{{\sqrt x + 3}} \le \dfrac{{17}}{3}\\
\Rightarrow A \le - 5 + \dfrac{{17}}{3} = \dfrac{2}{3}\\
\Rightarrow GTLN:A = \dfrac{2}{3}khi:x = 0\\
c)A = \dfrac{1}{2}\\
\Rightarrow \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}} = \dfrac{1}{2}\\
\Rightarrow \sqrt x + 3 = 4 - 10\sqrt x \\
\Rightarrow 11\sqrt x = 1\\
\Rightarrow \sqrt x = \dfrac{1}{{11}}\\
\Rightarrow x = \dfrac{1}{{121}}\left( {tmdk} \right)\\
B3)\\
a)Dkxd:a \ge 0;a \ne 4;a \ne 9\\
A = \dfrac{{2\sqrt a - 9}}{{a - 5\sqrt a + 6}} - \dfrac{{\sqrt a + 3}}{{\sqrt a - 2}} - \dfrac{{2\sqrt a + 1}}{{3 - \sqrt a }}\\
= \dfrac{{2\sqrt a - 9 - \left( {\sqrt a + 3} \right)\left( {\sqrt a - 3} \right) + \left( {2\sqrt a + 1} \right)\left( {\sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{2\sqrt a - 9 - a + 9 + 2a - 3\sqrt a - 2}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{a - \sqrt a - 2}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{\left( {\sqrt a - 2} \right)\left( {\sqrt a + 1} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 3} \right)}}\\
= \dfrac{{\sqrt a + 1}}{{\sqrt a - 3}}\\
b)A < 1\\
\Rightarrow \dfrac{{\sqrt a + 1}}{{\sqrt a - 3}} < 1\\
\Rightarrow \dfrac{{\sqrt a + 1 - \sqrt a + 3}}{{\sqrt a - 3}} < 0\\
\Rightarrow \dfrac{4}{{\sqrt a - 3}} < 0\\
\Rightarrow \sqrt a - 3 < 0\\
\Rightarrow \sqrt a < 3\\
\Rightarrow a < 9\\
Vay\,0 \le a < 9;a \ne 4
\end{array}$
$\begin{array}{l}
c)A = \dfrac{{\sqrt a + 1}}{{\sqrt a - 3}}\\
= \dfrac{{\sqrt a - 3 + 4}}{{\sqrt a - 3}}\\
= 1 + \dfrac{4}{{\sqrt a - 3}} \in Z\\
\Rightarrow \left( {\sqrt a - 3} \right) \in \left\{ { - 4; - 2; - 1;1;2;4} \right\}\\
\Rightarrow \sqrt a \in \left\{ { - 1;1;2;4;5;7} \right\}\\
Do:\sqrt a \ge 0\\
\Rightarrow \sqrt a \in \left\{ {1;2;4;5;7} \right\}\\
\Rightarrow a \in \left\{ {1;4;16;25;49} \right\}\\
Do:a \ne 4;a \ne 9\\
\Rightarrow a \in \left\{ {1;16;25;49} \right\}
\end{array}$