t, 5(x + 7) - 10 = $2^{3}$ . 5
⇔ 5(x + 7) - 10 = 40
⇔ 5(x + 7) = 50
⇔ x + 7 = 10
⇔ x = 3
u, $5^{3}$ - 5(4 + x) = 15
⇔ 125 - 5(4 + x) = 15
⇔ 5(4 + x) = 110
⇔ 4 + x = 22
⇔ x = 18
v, $2^{4}$ - 2(15 - x) = 10
⇔ 16 - 2(15 - x) = 10
⇔ 2(15 - x) = 6
⇔ 15 - x = 3
⇔ x = 12
w, $7^{2}$ - 7(13 - x) = 14
⇔ 49 - 7(13 - x) = 14
⇔ 7(13 - x) = 35
⇔ 13 - x = 5
⇔ x = 8
x, 95 - 5(x - 2) = 45
⇔ 5(x - 2) = 50
⇔ x - 2 = 10
⇔ x = 12
y, 155 - 10(x + 1) = 55
⇔ 10(x + 1) = 100
⇔ x + 1 = 10
⇔ x = 9
z, ($2^{2}$ + 3)(x - 5) + 14 = $5^{2}$ + 124 : $2^{2}$
⇔ 7(x - 5) + 14 = 56
⇔ 7(x - 5) = 42
⇔ x - 5 = 6
⇔ x = 11