Đáp án:
$(x+y)(y+z)(x+z)$
Giải thích các bước giải:
$x^2y+xy^2 +x^2z+xz^2+y^2z+yz^2+2xyz$
$= (x^2y + x^2z) + (xy^2 + 2xyz + xz^2) + (y^2z + yz^2)$
$= x^2(y + z) +x(y^2 + 2yz + z^2) + yz(y + z)$
$= x^2(y + z) +x(y+z)^2 + yz(y + z)$
$= (y+z)[x^2 + x(y+z) + yz]$
$= (y+z)(x^2 + xy + xz + yz)$
$= (y+z)[x(x+y) + z(x+y)]$
$= (y+z)(x+y)(x+z)$