Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
A = \dfrac{{15\sqrt x - 11}}{{x + 2\sqrt x - 3}} + \dfrac{{3\sqrt x - 2}}{{1 - \sqrt x }} - \dfrac{{2\sqrt x + 3}}{{\sqrt x + 3}}\\
= \dfrac{{15\sqrt x - 11}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 1} \right)}} - \dfrac{{3\sqrt x - 2}}{{\sqrt x - 1}} - \dfrac{{2\sqrt x + 3}}{{\sqrt x + 3}}\\
= \dfrac{{15\sqrt x - 11 - \left( {3\sqrt x - 2} \right)\left( {\sqrt x + 3} \right) - \left( {2\sqrt x + 3} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{15\sqrt x - 11 - \left( {3x + 7\sqrt x - 6} \right) - \left( {2x + \sqrt x - 3} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{15\sqrt x - 11 - 3x - 7\sqrt x + 6 - 2x - \sqrt x + 3}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{ - 5x + 7\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= - \dfrac{{5x - 7\sqrt x + 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= - \dfrac{{\left( {\sqrt x - 1} \right)\left( {5\sqrt x - 2} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= - \dfrac{{5\sqrt x - 2}}{{\sqrt x + 3}} = \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}}\\
b,\\
A = \dfrac{1}{2} \Leftrightarrow \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}} = \dfrac{1}{2}\\
\Leftrightarrow 2.\left( {2 - 5\sqrt x } \right) = \sqrt x + 3\\
\Leftrightarrow 4 - 10\sqrt x = \sqrt x + 3\\
\Leftrightarrow 11\sqrt x = 1\\
\Leftrightarrow \sqrt x = \dfrac{1}{{11}}\\
\Leftrightarrow x = \dfrac{1}{{121}}\\
c,\\
x = 3 - \sqrt 8 = 3 - \sqrt {{2^2}.2} = 3 - 2\sqrt 2 = 2 - 2\sqrt 2 .1 + 1 = {\left( {\sqrt 2 - 1} \right)^2}\\
\Rightarrow \sqrt x = \sqrt 2 - 1\\
\Rightarrow A = \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}} = \dfrac{{2 - 5.\left( {\sqrt 2 - 1} \right)}}{{\left( {\sqrt 2 - 1} \right) + 2}} = \dfrac{{7 - 5\sqrt 2 }}{{\sqrt 2 + 1}} = \dfrac{{\left( {7 - 5\sqrt 2 } \right)\left( {\sqrt 2 + 1} \right)}}{{\left( {\sqrt 2 - 1} \right)\left( {\sqrt 2 + 1} \right)}} = \dfrac{{ - 3 + 2\sqrt 2 }}{{2 - 1}} = - 3 + 2\sqrt 2 \\
d,\\
A = \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}} = \dfrac{{17 - 5.\left( {\sqrt x + 3} \right)}}{{\sqrt x + 3}} = \dfrac{{17}}{{\sqrt x + 3}} - 5\\
\sqrt x + 3 \ge 3,\,\,\,\,\forall x \ge 0,x \ne 1\\
\Rightarrow \dfrac{{17}}{{\sqrt x + 3}} \le \dfrac{{17}}{3}\\
\Rightarrow A = \dfrac{{17}}{{\sqrt x + 3}} - 5 \le \dfrac{{17}}{3} - 5 = \dfrac{2}{3}\\
\Rightarrow {A_{\max }} = \dfrac{2}{3} \Leftrightarrow x = 0
\end{array}\)