Giải thích các bước giải:
a.Ta có:
$\widehat{ANB}=\widehat{ALC}=90^o,\widehat{NAB}=\widehat{LAC}$
$\to \Delta ALC\sim\Delta ANB(g.g)$
$\to \dfrac{AL}{AN}=\dfrac{AC}{AB}$
$\to \dfrac{AL}{AC}=\dfrac{AN}{AB}$
Lại có $\widehat{LAN}=\widehat{BAC}$
$\to \Delta ANL\sim\Delta ABC(c.g.c)$
b.Ta có:
$\dfrac{AN}{AB}=\cos\widehat{BAN}=\cos A$
$\dfrac{BL}{BC}=\cos\widehat{LBC}=\cos B$
$\dfrac{CM}{CA}=\cos\widehat{ACM}=\cos C$
$\to \dfrac{AN}{AB}.\dfrac{BL}{BC}.\dfrac{CM}{CA}=\cos A.\cos B.\cos C$
$\to AN.BL.CM=AB.BC.CA.\cos A.\cos B.\cos C$