`P=(\sqrt{x})/(\sqrt{xy}+\sqrt{x}+2)+(\sqrt{y})/(\sqrt{yz}+\sqrt{y}+1)+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`
`P=(\sqrt{x}\sqrt{z})/(\sqrt{z}(\sqrt{xy}+\sqrt{x}+2))+(\sqrt{y}\sqrt{xz})/(\sqrt{xz}(\sqrt{yz}+\sqrt{y}+1))+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`
`P=(\sqrt{xz})/(\sqrt{xyz}+\sqrt{xz}+2\sqrt{z})+(\sqrt{xyz})/(\sqrt{xyz^2}+\sqrt{xyz}+\sqrt{xz})+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`
`P=(\sqrt{xz})/(\sqrt{4}+\sqrt{xz}+2\sqrt{z})+(\sqrt{4})/(\sqrt{4*z}+\sqrt{4}+\sqrt{xz})+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`
`P=(\sqrt{xz})/(2+\sqrt{xz}+2\sqrt{z})+(2)/(2\sqrt{z}+2+\sqrt{xz})+(2\sqrt{z})/(\sqrt{xz}+2\sqrt{z}+2)`
`P=(\sqrt{xz}+2+2\sqrt{z})/(\sqrt{xz}+2+2\sqrt{z}`
`P=1`
`⇒\sqrt{P} = \sqrt{1} = 1`
Vậy `\sqrt{P} = 1`