Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
DKXD:\,\,\,\left\{ \begin{array}{l}
x \ge 0\\
x - 5\sqrt x + 6 \ne 0\\
\sqrt x - 2 \ne 0\\
3 - \sqrt x \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge 0\\
x \ne 4\\
x \ne 9
\end{array} \right.\\
b,\\
B = \dfrac{{2\sqrt x - 9}}{{x - 5\sqrt x + 9}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{2\sqrt x + 1}}{{3 - \sqrt x }}\\
= \dfrac{{2\sqrt x - 9}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}} - \dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} + \dfrac{{2\sqrt x + 1}}{{\sqrt x - 3}}\\
= \dfrac{{\left( {2\sqrt x - 9} \right) - \left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + \left( {2\sqrt x + 1} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{2\sqrt x - 9 - \left( {x - 9} \right) + \left( {2x - 3\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{2\sqrt x - 9 - x + 9 + 2x - 3\sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x - \sqrt x - 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}}\\
c,\\
B > 1 \Leftrightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} - 1 > 0\\
\Leftrightarrow \dfrac{{\left( {\sqrt x + 1} \right) - \left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}} > 0\\
\Leftrightarrow \dfrac{4}{{\sqrt x - 3}} > 0\\
\Leftrightarrow \sqrt x - 3 > 0\\
\Leftrightarrow \sqrt x > 3\\
\Leftrightarrow x > 9\\
d,\\
B = \dfrac{{\sqrt x + 1}}{{x - 3}} = \dfrac{{\left( {\sqrt x - 3} \right) + 4}}{{\sqrt x - 3}} = 1 + \dfrac{4}{{\sqrt x - 3}}\\
B \in Z \Leftrightarrow \dfrac{4}{{\sqrt x - 3}} \in Z\\
x \in Z \Rightarrow \sqrt x - 3 \in \left\{ { \pm 1; \pm 2; \pm 4} \right\}\\
\Rightarrow \sqrt x \in \left\{ { - 1;1;2;4;5;7} \right\}\\
\sqrt x \ge 0 \Rightarrow \sqrt x \in \left\{ {1;2;4;5;7} \right\}\\
\Rightarrow x \in \left\{ {1;4;16;25;49} \right\}\\
x \ne 4;x \ne 9 \Rightarrow x \in \left\{ {1;16;25;49} \right\}
\end{array}\)