Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
\sqrt {{x^2} + 2x + 1} = 0\\
\Leftrightarrow \sqrt {{{\left( {x + 1} \right)}^2}} = 0\\
\Leftrightarrow \left| {x + 1} \right| = 0\\
\Leftrightarrow x = - 1\\
2,\\
x - 4\sqrt x + 3 = 0\,\,\,\,\,\,\,\,\,\left( {x \ge 0} \right)\\
\Leftrightarrow \left( {x - \sqrt x } \right) - \left( {3\sqrt x - 3} \right) = 0\\
\Leftrightarrow \sqrt x \left( {\sqrt x - 1} \right) - 3.\left( {\sqrt x - 1} \right) = 0\\
\Leftrightarrow \left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt x - 1 = 0\\
\sqrt x - 3 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\sqrt x = 1\\
\sqrt x = 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x = 9
\end{array} \right.\\
4,\\
\sqrt {\dfrac{{9\left( {x - 3} \right)}}{{16}}} - 5.\sqrt {\dfrac{{x - 3}}{{25}}} = \sqrt {9\left( {x - 3} \right)} + 1\,\,\,\,\,\,\,\,\,\,\left( {x \ge 3} \right)\\
\Leftrightarrow \sqrt {\dfrac{9}{{16}}.\left( {x - 3} \right)} - 5.\sqrt {\dfrac{1}{{25}}\left( {x - 3} \right)} = \sqrt {9.\left( {x - 3} \right)} + 1\\
\Leftrightarrow \dfrac{3}{4}.\sqrt {x - 3} - 5.\dfrac{1}{5}\sqrt {x - 3} = 3.\sqrt {x - 3} + 1\\
\Leftrightarrow \dfrac{3}{4}\sqrt {x - 3} - \sqrt {x - 3} = 3\sqrt {x - 3} + 1\\
\Leftrightarrow - \dfrac{{13}}{4}\sqrt {x - 3} = 1\\
\Leftrightarrow \sqrt {x - 3} = - \dfrac{4}{{13}}\,\,\,\,\,\left( {vn} \right)\\
5,\\
3\sqrt x - 2 < 0\,\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge 0} \right)\\
\Leftrightarrow \sqrt x < \dfrac{2}{3}\\
\Leftrightarrow 0 \le x < \dfrac{4}{9}\\
6,\\
\dfrac{{\sqrt {x + 1} }}{{\sqrt x }} > 2\,\,\,\,\,\,\,\,\,\,\,\left( {x > 0} \right)\\
\Leftrightarrow \sqrt {x + 1} > 2\sqrt x \\
\Leftrightarrow x + 1 > 4x\\
\Leftrightarrow 1 > 3x\\
\Leftrightarrow 0 < x < \dfrac{1}{3}
\end{array}\)
Em xem lại đề câu 3 nhé!