Đáp án:
2) A=0
Giải thích các bước giải:
\(\begin{array}{l}
1)A.B = \sqrt {4 + \sqrt {10 + 2\sqrt 5 } } .\sqrt {4 - \sqrt {10 + 2\sqrt 5 } } \\
= \sqrt {16 - \left( {10 + 2\sqrt 5 } \right)} \\
= \sqrt {6 - 2\sqrt 5 } \\
= \sqrt {5 - 2.\sqrt 5 .1 + 1} \\
= \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} \\
= \sqrt 5 - 1\\
A - B = \sqrt {4 + \sqrt {10 + 2\sqrt 5 } } - \sqrt {4 - \sqrt {10 + 2\sqrt 5 } } \\
\to {\left( {A - B} \right)^2} = 4 + \sqrt {10 + 2\sqrt 5 } - 2.\sqrt {4 + \sqrt {10 + 2\sqrt 5 } } .\sqrt {4 - \sqrt {10 + 2\sqrt 5 } } + 4 - \sqrt {10 + 2\sqrt 5 } \\
= 8 - 2\left( {\sqrt 5 - 1} \right)\\
= 8 - 2\sqrt 5 + 2\\
= 10 - 2\sqrt 5 \\
\to A - B = \sqrt {10 - 2\sqrt 5 } \\
2)A = \sqrt {4 + \sqrt 7 } - \sqrt {4 - \sqrt 7 } - \sqrt 2 \\
= \dfrac{{\sqrt {8 + 2\sqrt 7 } - \sqrt {8 - 2\sqrt 7 } - 2}}{{\sqrt 2 }}\\
= \dfrac{{\sqrt {7 + 2\sqrt 7 .1 + 1} - \sqrt {7 - 2\sqrt 7 .1 + 1} - 2}}{{\sqrt 2 }}\\
= \dfrac{{\sqrt {{{\left( {\sqrt 7 + 1} \right)}^2}} - \sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} - 2}}{{\sqrt 2 }}\\
= \dfrac{{\sqrt 7 + 1 - \sqrt 7 + 1 - 2}}{{\sqrt 2 }} = 0\\
3)DK:x \ne \pm 2\\
C = \dfrac{{\left( {x + 2} \right) + \sqrt {\left( {x - 2} \right)\left( {x + 2} \right)} }}{{\left( {x + 2} \right) - \sqrt {\left( {x - 2} \right)\left( {x + 2} \right)} }} + \dfrac{{\left( {x + 2} \right) - \sqrt {\left( {x - 2} \right)\left( {x + 2} \right)} }}{{\left( {x + 2} \right) + \sqrt {\left( {x - 2} \right)\left( {x + 2} \right)} }}\\
= \dfrac{{\sqrt {x + 2} \left( {\sqrt {x + 2} + \sqrt {x - 2} } \right)}}{{\sqrt {x + 2} \left( {\sqrt {x + 2} - \sqrt {x - 2} } \right)}} + \dfrac{{\sqrt {x + 2} \left( {\sqrt {x + 2} - \sqrt {x - 2} } \right)}}{{\sqrt {x + 2} \left( {\sqrt {x + 2} + \sqrt {x - 2} } \right)}}\\
= \dfrac{{\sqrt {x + 2} + \sqrt {x - 2} }}{{\sqrt {x + 2} - \sqrt {x - 2} }} + \dfrac{{\sqrt {x + 2} - \sqrt {x - 2} }}{{\sqrt {x + 2} + \sqrt {x - 2} }}\\
= \dfrac{{{{\left( {\sqrt {x + 2} + \sqrt {x - 2} } \right)}^2} + {{\left( {\sqrt {x + 2} - \sqrt {x - 2} } \right)}^2}}}{{\left( {\sqrt {x + 2} - \sqrt {x - 2} } \right)\left( {\sqrt {x + 2} + \sqrt {x - 2} } \right)}}\\
= \dfrac{{x + 2 + 2\sqrt {{x^2} - 4} + x - 2 + x + 2 - 2\sqrt {{x^2} - 4} + x - 2}}{{x + 2 - x + 2}}\\
= \dfrac{{4x}}{4} = x\\
4)D = \sqrt 2 \left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 2} \right)\sqrt {2 + \sqrt 3 } \\
= \left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 2} \right)\sqrt {4 + 2\sqrt 3 } \\
= \left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 2} \right)\sqrt {3 + 2.\sqrt 3 .1 + 1} \\
= \left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 2} \right)\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} \\
= \left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 2} \right)\left( {\sqrt 3 + 1} \right)\\
= \left( {3 + 2\sqrt 3 + 1} \right)\left( {\sqrt 3 - 2} \right)\\
= \left( {4 + 2\sqrt 3 } \right)\left( {\sqrt 3 - 2} \right)\\
= 2\left( {\sqrt 3 + 2} \right)\left( {\sqrt 3 - 2} \right)\\
= 2\left( {3 - 4} \right) = - 2
\end{array}\)