Đáp án:
\(\dfrac{{2x + 2\sqrt x + 2}}{{\sqrt x }}\)
Giải thích các bước giải:
\(\begin{array}{l}
P = \dfrac{{2x + 2}}{{\sqrt x }} + \dfrac{{\left( {\sqrt x - 1} \right)\left( {x + \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}} - \dfrac{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x + 1} \right)}}\\
= \dfrac{{2x + 2}}{{\sqrt x }} + \dfrac{{x + \sqrt x + 1}}{{\sqrt x }} - \dfrac{{x - \sqrt x + 1}}{{\sqrt x }}\\
= \dfrac{{2x + 2 + x + \sqrt x + 1 - x + \sqrt x - 1}}{{\sqrt x }}\\
= \dfrac{{2x + 2\sqrt x + 2}}{{\sqrt x }}
\end{array}\)