Đáp án:
Giải thích các bước giải:
Câu 5: `y=2cos x+3`
`-1 \le cos x \le 1`
`⇔ -2 \le 2cos x \le 2`
`⇔ 1 \le 2cos x +3 \le 5`
`⇒ 1 \le y \le 5`
`y_{min}=1` khi `cos x=-1 ⇔ x=\pi+k2\pi\ (k \in \mathbb{Z})`
Câu 6:
`y=-4sin x+3cos x+1`
`⇔ -\sqrt{(-4)^2+3^2} \le -4sin x+3cos x \le \sqrt{(-4)^2+3^2}`
`⇔ -5 \le -4sin x+3cos x \le 5`
`⇔ -4 \le -4sin x+3cos x+1 \le 6`
`⇒ -4 \le y \le 6`
`y_{min}=-4`
`y_{max}=6`