Đáp án: `t_2=4\sqrt{15}s`
Tóm tắt:
`m_1=m=15 \ kg`
`t_1=12s`
$m_2=m+m'=15+10=25 \ (kg)$
`F_2=F_1=F`
`s_2=s_1=s`
--------------------------
`t_2=?`
Giải:
Ta có:
`F_1=m_1a_1`
→ `a_1=\frac{F_1}{m_1}=\frac{F}{15}`
`s_1=\frac{1}{2}a_1t_1^2`
→ $t_1^2=\dfrac{2s_1}{a_1}=\dfrac{2s}{\dfrac{F}{15}}=\dfrac{30s}{F}$ (1)
`F_2=m_2a_2`
→ `a_2=\frac{F_2}{m_2}=\frac{F}{25}`
`s_2=\frac{1}{2}a_2t_2^2`
→ $t_2^2=\dfrac{2s_2}{a_2}=\dfrac{2s}{\dfrac{F}{25}}=\dfrac{50s}{F}$ (2)
Lấy (1) chia (2) vế theo vế
→ `\frac{t_1^2}{t_2^2}=\frac{30}{50}`
→ `(\frac{t_1}{t_2})^2=\frac{3}{5}`
→ `\frac{t_1}{t_2}=\sqrt{\frac{3}{5}}`
→ $t_2=\dfrac{t_1}{\sqrt{\dfrac{3}{5}}}=\dfrac{12}{\sqrt{\dfrac{3}{5}}}=4\sqrt{15} \ (s)$