Đáp án:
c. x=4
Giải thích các bước giải:
\(\begin{array}{l}
a.Thay:x = \dfrac{1}{9}\\
\to A = \dfrac{{\dfrac{1}{9} + 5}}{{2.\sqrt {\dfrac{1}{9}} - 1}} = \left( {\dfrac{1}{9} + 5} \right):\left( {2.\dfrac{1}{3} - 1} \right)\\
= \dfrac{{46}}{9}:\left( { - \dfrac{1}{3}} \right) = - \dfrac{{46}}{3}\\
b.B = \dfrac{{\sqrt x \left( {\sqrt x - 3} \right) + \left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right) - 6\sqrt x + 6}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{x - 3\sqrt x + x + 2\sqrt x - 3 - 6\sqrt x + 6}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{2x - 7\sqrt x + 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{\left( {\sqrt x - 3} \right)\left( {2\sqrt x - 1} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{2\sqrt x - 1}}{{\sqrt x + 3}}\\
\to dpcm\\
c.B = \dfrac{3}{5}\\
\to \dfrac{{2\sqrt x - 1}}{{\sqrt x + 3}} = \dfrac{3}{5}\\
\to 10\sqrt x - 5 = 3\sqrt x + 9\\
\to 7\sqrt x = 14\\
\to \sqrt x = 2\\
\to x = 4\left( {TM} \right)\\
d.Q = A.B = \dfrac{{x + 5}}{{2\sqrt x - 1}}.\dfrac{{2\sqrt x - 1}}{{\sqrt x + 3}}\\
= \dfrac{{x + 5}}{{\sqrt x + 3}} = \dfrac{{x - 9 + 4}}{{\sqrt x + 3}}\\
= \dfrac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) + 4}}{{\sqrt x + 3}}\\
= \sqrt x - 3 + \dfrac{4}{{\sqrt x + 3}}\\
= \sqrt x + 3 + \dfrac{4}{{\sqrt x + 3}} - 6\\
Do:x \ge 0\\
\to BDT:Co - si:\sqrt x + 3 + \dfrac{4}{{\sqrt x + 3}} \ge 2\sqrt {\left( {\sqrt x + 3} \right).\dfrac{4}{{\sqrt x + 3}}} \\
\to \sqrt x + 3 + \dfrac{4}{{\sqrt x + 3}} \ge 2.2\\
\to \sqrt x + 3 + \dfrac{4}{{\sqrt x + 3}} \ge 4\\
\to \sqrt x + 3 + \dfrac{4}{{\sqrt x + 3}} - 6 \ge - 2\\
\to Min = - 2\\
\Leftrightarrow \sqrt x + 3 = \dfrac{4}{{\sqrt x + 3}}\\
\to {\left( {\sqrt x + 3} \right)^2} = 4\\
\to \left[ \begin{array}{l}
\sqrt x + 3 = 2\\
\sqrt x + 3 = - 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt x = - 1\left( l \right)\\
\sqrt x = - 5\left( l \right)
\end{array} \right.
\end{array}\)
⇒ Không tồn tại x để Q đạt GTNN