Đáp án + giải thích các bước giải:
a)
`AB` và `AC` là hai tiếp tuyến cắt nhau
`-> AB=AC` và `AO` là phân giác `\hat{BAC}`
`-> ΔABC` cân mà `AO` là phân giác
`-> AO` đồng thời là đường trung trực của `BC`
b)
Gọi `E` là trung điểm `BC `
mà `O` là trung điểm `CD`
`-> EO` là đường trung bình `ΔBDC`
`-> EO ////BD`
`-> AO ////BD`
c) Ta có:
`OB=OI(=R)`
`-> ΔOBI` cân tại `O`
`-> \hat{OBI}=\hat{OIB}`
mà `\hat{OBI}+\hat{IBA}=90^0` và `\hat{OIB}+\hat{IBE}=90^0`
`-> \hat{IBA}=\hat{IBE}`
`-> BI` là phân giác `\hat{ABC}`