Giải thích các bước giải:
Ta có:
$HD\perp AB, HE\perp AC, AB\perp AC$
$\to ADHE$ là hình chữ nhật
$\to AH=DE$
Lại có $\Delta ABC$ vuông tại $A, AH\perp BC$
$\to AH^2=HB.HC$(Hệ thức lượng trong tam giác vuông)
$\to (AH^2)^2=(HB.HC)^2$
$\to AH^4=HB^2.HC^2$
$\to AH^4=(BD.BA).(CE.CA)$
$\to AH^4=BD.CE.(AB.AC)$
$\to AH^4=BD.CE.(AH.CB)$
$\to AH^3=BD.CE.BC$
$\to DE^3=BD.CE.CB$