Đáp án:
$P=7$
Giải thích các bước giải:
$P=\dfrac{2}{\sqrt{3}+1}-\dfrac{1}{\sqrt{3}-2}+\dfrac{12}{\sqrt{3}+3}$
$=\dfrac{2.({\sqrt{3}-1)}}{(\sqrt{3}+1).(\sqrt{3}-1)}$$-$$\dfrac{\sqrt{3}+2}{(\sqrt{3}+2).(\sqrt{3}-2)}$$+$$\dfrac{12.(3-\sqrt{3})}{(\sqrt{3}+3).(3-\sqrt{3})}$$=\sqrt{3}-1+\sqrt{3}+2+6-2\sqrt{3}$$=7$