( 10 + 2x ) : $4^{2011}$ = $4^{2013}$
10 + 2x = $4^{4024}$
2x = `(4^{4023} . 2)/(2.5)`
2x = `4^{4023}/5`
x = `(4^{4022} . 2 )/(2.5)`
x = `4^{4022}/5`
Vậy x = `4^{4022}/5`
Trường hợp 2 :
( 10 + 2x ) : `4^2011` = `2^2013`
( 10 + 2x ) : `(2^2)^2011` = `2^2013`
( 10 + 2x ) : `2^4022` = `2^2013`
10 + 2x = `2^2013` . `2^4022`
10 + 2x = `2^6035`
2x = `2^6035` - 10
x = `(2^{6035}-10)/2`
Vậy x = `(2^{6035}-10)/2`