a, $\sqrt[]{21+√5}$ + $\sqrt[]{21-4√5}$
=$\sqrt[]{(√20+1)²}$ + $\sqrt[]{(√20-1)²}$
=$|$ √20+1$|$ + $|$ √20-1$|$
=√20+1 + √20 -1
= 2√20
b,$\sqrt[]{29-12√5}$ + $\sqrt[]{29+12√5}$
=$\sqrt[]{20-2.2√5.3+9}$ + $\sqrt[]{20+2.2√5.3+9}$
=$\sqrt[]{(√20-3)²}$ + $\sqrt[]{(√20+3)²}$
=$|$ √20-3$|$ + $|$ √20+3$|$
=√20-3 + √20 +3
=2√20
c, $\sqrt[]{13+√48}$ -$\sqrt[]{13-√48}$
=$\sqrt[]{12+2.2√3.1+1}$ - $\sqrt[]{12-2.2√3.1+1}$
=$\sqrt[]{(√12+1)²}$ - $\sqrt[]{(√12-1)²}$
=$|$√12+1$|$ - $|$√12-1$|$
=√12+1 -√12+1
=2
cuthiliien