Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
3.\left( {x - \dfrac{1}{2}} \right) - 5.\left( {x + \dfrac{3}{5}} \right) = - x + \dfrac{1}{5}\\
\Leftrightarrow 3x - \dfrac{3}{2} - 5x - 5.\dfrac{3}{5} = - x + \dfrac{1}{5}\\
\Leftrightarrow 3x - \dfrac{3}{2} - 5x - 3 + x - \dfrac{1}{5} = 0\\
\Leftrightarrow \left( {3x - 5x + x} \right) - \left( {\dfrac{3}{2} + 3 + \dfrac{1}{5}} \right) = 0\\
\Leftrightarrow - x - \dfrac{{47}}{{10}} = 0\\
\Leftrightarrow x = - \dfrac{{47}}{{10}}\\
b,\\
\left( {\dfrac{1}{4} - x} \right)\left( {x + \dfrac{2}{5}} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{1}{4} - x = 0\\
x + \dfrac{2}{5} = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{1}{4}\\
x = - \dfrac{2}{5}
\end{array} \right.\\
c,\\
\dfrac{1}{4}.{x^2} - 3.x = 0\\
\Leftrightarrow x.\left( {\dfrac{1}{4}x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
\dfrac{1}{4}x - 3 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
\dfrac{1}{4}x = 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 12
\end{array} \right.\\
d,\\
\left| {2.x + 1} \right| + \dfrac{2}{3} = 2\\
\Leftrightarrow \left| {2.x + 1} \right| = 2 - \dfrac{2}{3}\\
\Leftrightarrow \left| {2x + 1} \right| = \dfrac{4}{3}\\
\Leftrightarrow \left[ \begin{array}{l}
2x + 1 = \dfrac{4}{3}\\
2x + 1 = - \dfrac{4}{3}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{4}{3} - 1\\
2x = - \dfrac{4}{3} - 1
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = \dfrac{1}{3}\\
2x = - \dfrac{7}{3}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{1}{6}\\
x = - \dfrac{7}{6}
\end{array} \right.\\
e,\\
\left| {2.x - 3} \right| + \left| {y - 5} \right| = 0\\
\left. \begin{array}{l}
\left| {2.x - 3} \right| \ge 0,\,\,\,\forall x\\
\left| {y - 5} \right| \ge 0,\,\,\,\forall y
\end{array} \right\} \Rightarrow \left| {2x - 3} \right| + \left| {y - 5} \right| \ge 0,\,\,\,\forall x,y\\
\Rightarrow \left\{ \begin{array}{l}
\left| {2x - 3} \right| = 0\\
\left| {y - 5} \right| = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2x - 3 = 0\\
y - 5 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{3}{2}\\
y = 5
\end{array} \right.\\
g,\\
{\left( {2x - 3} \right)^2} = 36\\
\Leftrightarrow {\left( {2x - 3} \right)^2} = {6^2}\\
\Leftrightarrow \left[ \begin{array}{l}
2x - 3 = 6\\
2x - 3 = - 6
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
2x = 9\\
2x = - 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{9}{2}\\
x = - \dfrac{3}{2}
\end{array} \right.\\
h,\\
{7^{x + 2}} + {2.7^x} = 357\\
\Leftrightarrow {7^x}{.7^2} + {2.7^x} = 357\\
\Leftrightarrow {7^x}.\left( {{7^2} + 2} \right) = 357\\
\Leftrightarrow {7^x}.51 = 357\\
\Leftrightarrow {7^x} = 7\\
\Leftrightarrow x = 1
\end{array}\)