Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
3,\\
a,\\
\sqrt {2x + 14} = 15\,\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge - 7} \right)\\
\Leftrightarrow {\sqrt {2x + 14} ^2} = {15^2}\\
\Leftrightarrow 2x + 14 = 225\\
\Leftrightarrow 2x = 211\\
\Leftrightarrow x = \dfrac{{211}}{2}\\
b,\\
\sqrt {3 - 2x} = 7\,\,\,\,\,\,\,\,\,\,\,\left( {x \le \dfrac{3}{2}} \right)\\
\Leftrightarrow {\sqrt {3 - 2x} ^2} = {7^2}\\
\Leftrightarrow 3 - 2x = 49\\
\Leftrightarrow 2x = - 46\\
\Leftrightarrow x = - 23\\
c,\,\,\,\,\,2\sqrt {4x + 1} - 8 = 2\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge - \dfrac{1}{4}} \right)\\
\Leftrightarrow 2\sqrt {4x + 1} = 10\\
\Leftrightarrow \sqrt {4x + 1} = 5\\
\Leftrightarrow 4x + 1 = 25\\
\Leftrightarrow 4x = 24\\
\Leftrightarrow x = 6\\
d,\,\,\,\,\,\,7 - 2\sqrt {3x - 1} = - 5\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge \dfrac{1}{3}} \right)\\
\Leftrightarrow 2\sqrt {3x - 1} = 12\\
\Leftrightarrow \sqrt {3x - 1} = 6\\
\Leftrightarrow 3x - 1 = 36\\
\Leftrightarrow 3x = 37\\
\Leftrightarrow x = \dfrac{{37}}{3}\\
e,\,\,\,\,\,\,14 - 3\sqrt {x + 5} = - 7\,\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge - 5} \right)\\
\Leftrightarrow 3\sqrt {x + 5} = 21\\
\Leftrightarrow \sqrt {x + 5} = 7\\
\Leftrightarrow x + 5 = 49\\
\Leftrightarrow x = 42\\
4,\\
a,\,\,\,\,\sqrt {4x + 4} - 2\sqrt {9x + 9} + 3\sqrt {16x + 16} = 5\,\,\,\,\,\,\,\,\,\,\left( {x \ge - 1} \right)\\
\Leftrightarrow \sqrt {4.\left( {x + 1} \right)} - 2.\sqrt {9\left( {x + 1} \right)} + 3.\sqrt {16\left( {x + 1} \right)} = 5\\
\Leftrightarrow 2\sqrt {x + 1} - 2.3\sqrt {x + 1} + 3.4\sqrt {x + 1} = 5\\
\Leftrightarrow 2\sqrt {x + 1} - 6\sqrt {x + 1} + 12\sqrt {x + 1} = 5\\
\Leftrightarrow 8\sqrt {x + 1} = 5\\
\Leftrightarrow \sqrt {x + 1} = \dfrac{5}{8}\\
\Leftrightarrow x + 1 = \dfrac{{25}}{{64}}\\
\Leftrightarrow x = - \dfrac{{39}}{{64}}\\
b,\,\,\,\,\sqrt {25x - 25} - 7\sqrt {36x - 36} + 37 = 0\,\,\,\,\,\,\,\,\,\,\,\left( {x \ge 1} \right)\\
\Leftrightarrow \sqrt {25\left( {x - 1} \right)} - 7.\sqrt {36\left( {x - 1} \right)} + 37 = 0\\
\Leftrightarrow 5\sqrt {x - 1} - 7.6\sqrt {x - 1} + 37 = 0\\
\Leftrightarrow 5\sqrt {x - 1} - 42\sqrt {x - 1} + 37 = 0\\
\Leftrightarrow - 37\sqrt {x - 1} + 37 = 0\\
\Leftrightarrow \sqrt {x - 1} = 1\\
\Leftrightarrow x - 1 = 1\\
\Leftrightarrow x = 2\\
c,\,\,\,\,\,\,\,\sqrt 2 x - \sqrt {18} = 0\\
\Leftrightarrow \sqrt 2 x = \sqrt {18} \\
\Leftrightarrow x = \sqrt 9 \\
\Leftrightarrow x = 3\\
d,\,\,\,\,\,\sqrt 3 - x - \sqrt {27} = 0\\
\Leftrightarrow \sqrt 3 - x - 3\sqrt 3 = 0\\
\Leftrightarrow x = - 2\sqrt 3 \\
e,\\
\left( {\sqrt 2 + 1} \right)x = 3 + 2\sqrt 2 \\
\Leftrightarrow \left( {\sqrt 2 + 1} \right)x = 2 + 2.\sqrt 2 .1 + 1\\
\Leftrightarrow \left( {\sqrt 2 + 1} \right)x = {\left( {\sqrt 2 + 1} \right)^2}\\
\Leftrightarrow x = \sqrt 2 + 1
\end{array}\)