Đáp án:
a) `(\sqrt{x}+2)/(\sqrt{x}-3)`
b) `x=(98+55\sqrt{3})/2`
Giải thích các bước giải:
a)
`x>=0;x\ne1;9`
Xét `x-4\sqrt{x}+3`
`=x-\sqrt{x}-3\sqrt{x}+3`
`=\sqrt{x}(\sqrt{x}-1)-3(\sqrt{x}-1)`
`=(\sqrt{x}-3)(\sqrt{x}-1)`
Ta có:
`A=2/(\sqrt{x}-3)+(2\sqrt{x})/(x-4\sqrt{x}+3)+\sqrt{x}/(\sqrt{x}-1)`
`=2/(\sqrt{x}-3)+(2\sqrt{x})/((\sqrt{x}-3)(\sqrt{x}-1))+\sqrt{x}/(\sqrt{x}-1)`
`=(2(\sqrt{x}-1)+2\sqrt{x}+\sqrt{x}(\sqrt{x}-3))/((\sqrt{x}-3)(\sqrt{x}-1))`
`=(2\sqrt{x}-2+2\sqrt{x}+x-3\sqrt{x})/((\sqrt{x}-3)(\sqrt{x}-1))`
`=(x+\sqrt{x}-2)/((\sqrt{x}-3)(\sqrt{x}-1))`
`=(x-\sqrt{x}+2\sqrt{x}-2)/((\sqrt{x}-3)(\sqrt{x}-1))`
`=(x(\sqrt{x}-1)+2(\sqrt{x}-1))/((\sqrt{x}-3)(\sqrt{x}-1))`
`=((\sqrt{x}-1)(\sqrt{x}+2))/((\sqrt{x}-3)(\sqrt{x}-1))`
`=(\sqrt{x}+2)/(\sqrt{x}-3)`
b)
`A=\sqrt{3}`
`->(\sqrt{x}+2)/(\sqrt{x}-3)=\sqrt{3}`
`->\sqrt{3}(\sqrt{x}-3)=\sqrt{x}+2`
`->3(\sqrt{x}-3)^2=(\sqrt{x}+2)^2`
`->3(x-6\sqrt{x}+9)=x+4\sqrt{x}+4`
`->3x-18\sqrt{x}+27=x+4\sqrt{x}+4`
`->2x-22\sqrt{x}+23=0`
`->2(x-11\sqrt{x}+121/4)-75/2=0`
`->2(\sqrt{x}-11/2)^2=75/2`
`->(\sqrt{x}-11/2)^2=75/4`
`->`\(\left[ \begin{array}{l}\sqrt{x}-\dfrac{11}{2}=\dfrac{5\sqrt{3}}{2}\\\sqrt{x}-\dfrac{11}{2}=\dfrac{-5\sqrt{3}}{2}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}\sqrt{x}=\dfrac{5\sqrt{3}+11}{2}\\\sqrt{x}=\dfrac{-5\sqrt{3}+11}{2}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x=\dfrac{98+55\sqrt{3}}{2}\\x=\dfrac{98-55\sqrt{3}}{2}\end{array} \right.\)
Do phép bình phương chưa tương đương nên thử lại, nghiệm duy nhất là `(98+55\sqrt{3})/2`