Giải thích các bước giải:
Cách 1:
$\begin{array}{l}
a)A = x + \dfrac{1}{{4x}}\left( {DK:x > 0} \right)\\
\ge 2\sqrt {x.\dfrac{1}{{4x}}} \left( {BDT:Cauchy} \right)\\
= 2\sqrt {\dfrac{1}{4}} \\
= 1\\
\Rightarrow MinA = 1
\end{array}$
Dấu bằng xảy ra:
$\begin{array}{l}
\Leftrightarrow x = \dfrac{1}{{4x}}\\
\Leftrightarrow {x^2} = \dfrac{1}{4}\\
\Leftrightarrow x = \dfrac{1}{2}\left( {Do:x > 0} \right)
\end{array}$
Vậy $MinA = 1 \Leftrightarrow x = \dfrac{1}{2}$
$\begin{array}{l}
b)B = x + \dfrac{1}{{x - 2}}\left( {DK:x > 2} \right)\\
= \left( {x - 2 + \dfrac{1}{{x - 2}}} \right) + 2\\
\ge 2\sqrt {\left( {x - 2} \right).\dfrac{1}{{x - 2}}} + 2\\
= 4
\end{array}$
$ \Rightarrow MinB = 4$
Dấu bằng xảy ra
$\begin{array}{l}
\Leftrightarrow x - 2 = \dfrac{1}{{x - 2}}\\
\Leftrightarrow {\left( {x - 2} \right)^2} = 1\\
\Leftrightarrow x - 2 = 1\left( {Do:x - 2 > 0} \right)\\
\Leftrightarrow x = 3
\end{array}$
Vậy $MinB = 4 \Leftrightarrow x = 3$
Cách 2:
a) Ta có:
$\begin{array}{l}
A - 1 = x + \dfrac{1}{{4x}} - 1\\
= \dfrac{{4{x^2} - 4x + 1}}{{4x}}\\
= \dfrac{{{{\left( {2x - 1} \right)}^2}}}{{4x}}
\end{array}$
$\begin{array}{l}
Do:{\left( {2x - 1} \right)^2} \ge 0,\forall x > 0\\
\Rightarrow \dfrac{{{{\left( {2x - 1} \right)}^2}}}{{4x}} \ge 0,\forall x > 0\\
\Rightarrow A - 1 \ge 0\\
\Rightarrow A \ge 1
\end{array}$
Dấu bằng xảy ra ${ \Leftrightarrow {{\left( {2x - 1} \right)}^2} = 0 \Leftrightarrow x = \dfrac{1}{2}}$
Vậy $MinA = 1 \Leftrightarrow x = \dfrac{1}{2}$
b) Ta có:
$\begin{array}{l}
B = x + \dfrac{1}{{x - 2}}\left( {DK:x > 2} \right)\\
B - 4 = x + \dfrac{1}{{x - 2}} - 4\\
= \dfrac{{\left( {x - 4} \right)\left( {x - 2} \right) + 1}}{{x - 2}}\\
= \dfrac{{{x^2} - 6x + 9}}{{x - 2}}\\
= \dfrac{{{{\left( {x - 3} \right)}^2}}}{{x - 2}}\\
Do:{\left( {x - 3} \right)^2} \ge 0,\forall x > 2\\
\Rightarrow \dfrac{{{{\left( {x - 3} \right)}^2}}}{{x - 2}} \ge 0,\forall x > 2\\
\Rightarrow B - 4 \ge 0\\
\Rightarrow B \ge 4\\
\Rightarrow MinB = 4
\end{array}$
Dấu bằng xảy ra $ \Leftrightarrow {\left( {x - 3} \right)^2} = 0 \Leftrightarrow x = 3$
Vậy $MinB = 4 \Leftrightarrow x = 3$