$\frac{x-2\sqrt{xy}+y}{x-y}$+$\frac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}$
=$\frac{x-2\sqrt{xy}+y}{x-y}$+$\frac{2\sqrt{y}(\sqrt{x}-\sqrt{y})}{(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}$
=$\frac{x-2\sqrt{xy}+y}{x-y}$+$\frac{2\sqrt{xy}-2y}{x-y}$
=$\frac{x-2\sqrt{xy}+y+2\sqrt{xy}-2y}{x-y}$
=$\frac{x-y}{x-y}$=1