`2^(2020)/(512.(-2)^1920)`
`=2^2020/(2^(9).2^1920)`
`=2^2020/2^1929`
`=2^(2020):2^(1929)`
`=2^(2020-1929)`
`=2^91`
****
`5^2020/5^1985=5^(2020):5^(1985)=5^(2020-1985)=5^35`
****
Ta có:
`2^91>2^90` và `2^90=2^(5.18)=(2^5)^18=32^18`
`5^35<5^36` và `5^36=5^(2.18)=(5^2)^18=25^18`
`⇒2^91>32^18>25^18>5^35`
`⇔2^2020/(512.(-2)^1920)>5^2020/5^1985`