Đáp án:
\(x = 56,26211853\)
Giải thích các bước giải:
\(\begin{array}{l}
\dfrac{{x - 2}}{{2009}} + \dfrac{{x - 42}}{{1969}} + \dfrac{{x - 121}}{{1890}} = 0\\
\to \dfrac{{x - 2}}{{2009}} - 1 + \dfrac{{x - 42}}{{1969}} - 1 + \dfrac{{x - 121}}{{1890}} - 1 + 3 = 0\\
\to \dfrac{{x - 2011}}{{2009}} + \dfrac{{x - 2011}}{{1969}} + \dfrac{{x - 2011}}{{1890}} + 3 = 0\\
\to \left( {x - 2011} \right)\left( {\dfrac{1}{{2009}} + \dfrac{1}{{1969}} + \dfrac{1}{{1890}}} \right) = - 3\\
\to x - 2011 = 3:\left( {\dfrac{1}{{2009}} + \dfrac{1}{{1969}} + \dfrac{1}{{1890}}} \right)\\
\to x - 2011 = - 1954,737881\\
\to x = 2011 - 1954,737881\\
\to x = 56,26211853
\end{array}\)