Đáp án:
`x^4+x^2-6x+9`
`=(x^4+x^2-6x+4)+5`
`=(x^4+x^2-2x^3+2x^3-4x^2+2x+4x^2-8x+4)+5`
`=[x^2(x^2-2x+1)+2x(x^2-2x+1)+4(x^2-2x+1)]+5`
`=(x^2-2x+1)(x^2+2x+4)+5`
`=(x-1)^2. (x^2+2x+1+3)+5`
`=(x-1)^2. [(x+1)^2+3]+5`
Ta cóa: `(x-1)^2>=0, (x+1)^2>=0`
`-> (x-1)^2[(x+1)^2+3]>=0`
`-> (x-1)^2[(x+1)^2+3]+5>=0`
Dấu "=" xảy ra `<=> x-1=0`
`-> x=1`
Vậy `P_(min)=5 <=> x=1`