a) Q= $\frac{3x+\sqrt[]{9x}-3}{x+\sqrt[]{x}-2}$ -$\frac{\sqrt[]{x}+1}{\sqrt[]{x}+2}$ +$\frac{\sqrt[]{x}-2}{1-\sqrt[]{x}}$
= $\frac{3x+\sqrt[]{9x}-3}{(\sqrt[]{x}+2)(\sqrt[]{x}-1)}$- $\frac{(\sqrt[]{x}+1)(\sqrt[]{x}-1)}{(\sqrt[]{x}+2)(\sqrt[]{x}-1)}$- $\frac{(\sqrt[]{x}-2)(\sqrt[]{x}+2)}{(\sqrt[]{x}-1)(\sqrt[]{x}+2)}$
=$\frac{3x+\sqrt[]{9x}-3-x+1-x+4}{(\sqrt[]{x}-1)(\sqrt[]{x}+2)}$
=$\frac{x+3\sqrt[]{x}+2}{(\sqrt[]{x}+2)(\sqrt[]{x}-1)}$
=$\frac{(\sqrt[]{x}+2)(\sqrt[]{x}+1)}{(\sqrt[]{x}+2)(\sqrt[]{x}-1)}$
=$\frac{\sqrt[]{x}+1}{\sqrt[]{x}-1}$
b ) Thay x = 4+2$\sqrt[]{3}$ vào Q
Q= $\frac{\sqrt[]{4+2\sqrt[]{3}}+1}{\sqrt[]{4+2\sqrt[]{3}}-1}$
= $\frac{\sqrt[]{(1+\sqrt[]{3})^2}+1}{\sqrt[]{(1+\sqrt[]{3})^2}-1}$
=$\frac{1+\sqrt[]{3}+1}{1+\sqrt[]{3}-1}$
=$\frac{3+2\sqrt[]{3}}{3}$
c) Để Q=3
⇔ $\frac{\sqrt[]{x}+1}{\sqrt[]{x}-1}$ =3
⇔ $\sqrt[]{x}$+1=3($\sqrt[]{x}$-1)
⇔ $\sqrt[]{x}$-3$\sqrt[]{x}$=-3-1
⇔ -2$\sqrt[]{x}$ =-4
⇔ $\sqrt[]{x}$=2
⇔ x= 4
d) Làm tương tự phần c nha
e) Với x≥0, x$\neq$ 1
Ta có: $\frac{\sqrt[]{x}+1}{\sqrt[]{x}-1}$ = 1+$\frac{2}{\sqrt[]{x}-1}$
Để Q nguyên ⇔ $\sqrt[]{x}$ - 1 ∈ Ư(2)={±1;±2}
Lập bảng giá trị
$\sqrt[]{x}$ - 1 -1 1 -2 2
$\sqrt[]{x}$ 0 2 -1(L) 3
x 0 (TM) 4(TM) 9 (TM)
Vậy để Q nguyên thì x ∈ { 0;4;9}...