Đáp án:
d) \(4{\left( {x + 2} \right)^2}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\dfrac{1}{2}x\left( {{x^2} - 4} \right) = 0\\
\to \left[ \begin{array}{l}
x = 0\\
\left( {x - 2} \right)\left( {x + 2} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 0\\
x = 2\\
x = - 2
\end{array} \right.\\
b)x\left( {x + 1} \right) - x\left( {x - 3} \right) = 0\\
\to x\left( {x + 1 - x + 3} \right) = 0\\
\to 4x = 0\\
\to x = 0\\
c)\left( {x - 2} \right)\left( {x + 4} \right) - {\left( {x + 1} \right)^2}\\
= {x^2} + 2x - 8 - {x^2} - 2x - 1\\
= - 9\\
d)4{x^2} + 16x + 16\\
= 4\left( {{x^2} + 4x + 4} \right)\\
= 4{\left( {x + 2} \right)^2}
\end{array}\)