Đáp án:
a) \(\dfrac{2}{{\sqrt x - 1}}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ge 0;x \ne 1\\
P = \left( {\dfrac{{1 + \sqrt x }}{{x + 1}}} \right):\left( {\dfrac{1}{{\sqrt x - 1}} - \dfrac{{2\sqrt x }}{{x\sqrt x + \sqrt x - x - 1}}} \right) - 1\\
= \dfrac{{1 + \sqrt x }}{{x + 1}}:\left[ {\dfrac{1}{{\sqrt x - 1}} - \dfrac{{2\sqrt x }}{{x\left( {\sqrt x - 1} \right) + \left( {\sqrt x - 1} \right)}}} \right] - 1\\
= \dfrac{{1 + \sqrt x }}{{x + 1}}:\left[ {\dfrac{1}{{\sqrt x - 1}} - \dfrac{{2\sqrt x }}{{\left( {x + 1} \right)\left( {\sqrt x - 1} \right)}}} \right] - 1\\
= \dfrac{{1 + \sqrt x }}{{x + 1}}:\left[ {\dfrac{{x + 1 - 2\sqrt x }}{{\left( {x + 1} \right)\left( {\sqrt x - 1} \right)}}} \right] - 1\\
= \dfrac{{1 + \sqrt x }}{{x + 1}}.\dfrac{{\left( {x + 1} \right)\left( {\sqrt x - 1} \right)}}{{{{\left( {\sqrt x - 1} \right)}^2}}} - 1\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}} - 1 = \dfrac{{\sqrt x + 1 - \sqrt x + 1}}{{\sqrt x - 1}}\\
= \dfrac{2}{{\sqrt x - 1}}\\
b)Q = P - \sqrt x = \dfrac{2}{{\sqrt x - 1}} - \sqrt x \\
= \dfrac{{2 - x + \sqrt x }}{{\sqrt x - 1}}\\
= \dfrac{{ - \left( {x - 2\sqrt x + 1} \right) - \sqrt x + 3}}{{\sqrt x - 1}}\\
= \dfrac{{ - {{\left( {\sqrt x - 1} \right)}^2} - \left( {\sqrt x - 1} \right) + 2}}{{\sqrt x - 1}}\\
= - \left( {\sqrt x - 1} \right) - 1 + \dfrac{2}{{\sqrt x - 1}}\\
Q \in Z\\
\Leftrightarrow \dfrac{2}{{\sqrt x - 1}} \in Z\\
\Leftrightarrow \sqrt x - 1 \in U\left( 2 \right)\\
\to \left[ \begin{array}{l}
\sqrt x - 1 = 2\\
\sqrt x - 1 = - 2\left( l \right)\\
\sqrt x - 1 = 1\\
\sqrt x - 1 = - 1
\end{array} \right. \to \left[ \begin{array}{l}
x = 9\\
x = 4\\
x = 0
\end{array} \right.
\end{array}\)