Đáp án:
-Nếu $R$ là $Mg$: \(\%mFe=87,5\%\); \(\%mMg=12,5\%\)
-Nếu $R$ là $Ca$: \(\%mFe=58,33\%\); \(\%mCa=41,63\%\)
Giải thích các bước giải:
Gọi số mol $Fe$ và $R$ là $a$ và $b$
Ta có $56a+R.b=9,6(1)$
$nH_{2}=\frac{4,48}{22,4}=0,2mol$
Phương trình hóa học:
\(Fe+2HCl \to FeCl_{2}+H_{2}\)
\(R+2HCl \to RCl_{2}+H_{2}\)
Ta có: $a+b=0,2(2)$
Vì khi cho quỳ vào thì hóa đỏ, nên $HCl$ còn dư
\(\to nHCl\) phản ứng $<nHCl=0,5mol$
\(\to nR<\frac{nHCl}{2}=\frac{0,5}{2}=0,25mol\)
\(\to R>\frac{4,6}{0,25}=18,4\)
Từ $(1)$ và $(2)$ ta có: $R=\frac{9,6-56a}{0,2-a}=56-\frac{1,6}{0,2-a}<56$
$R=\frac{9,6-56a}{0,2-a}=56-\frac{1,6}{0,2-a}<56$
\(\to 18,4<R<56\)
\(\to R\) là $Mg$ hoặc $Ca$
-Nếu $R$ là $Mg$
$a+b=0,2$ và $56a+24b=9,6$
\(\to a=0,15; b=0,05\)
\(\to \%mFe=\frac{0,15.56}{9,6}=87,5\%\)
\(\to \%mMg=12,5\%\)
-Nếu $R$ là $Ca$
$a+b=0,2$ và $56a+40b=9,6$
\(\to a=b=0,1\)
\(\to \%mFe=\frac{0,1.56}{9,6}=58,33\%\)
\(\to \%mCa=41,63\%\)