$8x+6y=1$
$\Leftrightarrow y=\dfrac{-4}{3}x+\dfrac{1}{6}$
Thay $x=0\Rightarrow y=\dfrac{1}{6}$
$\Rightarrow d\cap Oy=A\Big(0;\dfrac{1}{6}\Big)$
$\Rightarrow OA=\dfrac{1}{6}$
Thay $y=0\Rightarrow x=\dfrac{1}{8}$
$\Rightarrow d\cap Ox=B\Big(\dfrac{1}{8};0\Big)$
$\Rightarrow OB=\dfrac{1}{8}$
Theo Pytago, $AB=\sqrt{OA^2+OB^2}=\dfrac{5}{24}$
Đặt $h=d(d;O)$
Theo hệ thức lượng:
$OA.OB=h.AB$
$\to h=\dfrac{1}{10}$