$\text{a) Xét Δ OAB = Δ OAC, ta có :}$
$\text{OA là cạnh chung}$
$\text{$\widehat{xOA}$ = $\widehat{AOy}$ (gt)}$
$\text{=> Δ OAB = Δ OAC (cạnh huyền - góc nhọn).}$
$\text{b) Vì Δ OAB = Δ OAC (cmt)}$
$\text{=> AB = AC (2 cạnh tương ứng) ; $\widehat{BAO}$ = $\widehat{CAO}$.}$
$\text{=> Δ ABC cân tại A (1).}$
$\text{Ta có : $\widehat{xOA}$ = $\widehat{AOy}$}$
$\text{Mà $\widehat{xOA}$ + $\widehat{AOy}$ = $120^{o}$}$
$\text{=> $\widehat{xOA}$ = $\widehat{AOy}$ = $60^{o}$.}$
$\text{Xét Δ BOA}$
$\text{Ta lại có :}$
$\text{ $\widehat{ABO}$ + $\widehat{xOA}$ + $\widehat{BAO}$ = $180^{o}$ (định lí tổng ba góc trong tam giác).}$
$\text{=> $90^{o}$ + $60^{o}$ + $\widehat{BAO}$ = $180^{o}$}$
$\text{=> $\widehat{BAO}$ = $180^{o}$ - $90^{o}$ - $60^{o}$}$
$\text{=> $\widehat{BAO}$ = $30^{o}$.}$
$\text{=> $\widehat{BAO}$ = $\widehat{CAO}$ = $30^{o}$}$
$\text{=> $\widehat{BAO}$ + $\widehat{CAO}$ = $30^{o}$ + $30^{o}$}$
$\text{=> $\widehat{A}$ = $60^{o}$ (2)}$
$\text{ Từ (1) (2) => Δ ABC đều.}$
$\text{c) Vì Δ ABC đều => B = AC = BC}$
$\text{Gọi AO ∩ BC = {M}}$
$\text{Xét Δ AMB và Δ AMC, ta có :}$
$\text{AB = AC (cmt)}$
$\text{$\widehat{BAM}$ = $\widehat{CAM}$ (cmt)}$
$\text{AM là cạnh chung}$
$\text{=> Δ AMB = Δ AMC (c - g - c)}$
$\text{=> $\widehat{BMA}$ = $\widehat{AMC}$}$
$\text{Ta có : $\widehat{BMA}$ + $\widehat{AMC}$ = $180^{o}$ (2 góc kề bù).}$
$\text{Mà $\widehat{BMA}$ = $\widehat{AMC}$}$
$\text{=> $\widehat{BMA}$ = $\widehat{AMC}$ = $90^{o}$}$
$\text{=> AO ⊥ BC}$