`A(1,-2);B(3,0);C(-1,4);D(2,-2)`
`a)` Ta có:
`AB=\sqrt{(3-1)^2+(0+2)^2}=\sqrt{8}=2\sqrt{2}`
`CD=\sqrt{(2+1)^2+(-2-4)^2}=\sqrt{45}=3\sqrt{5}`
`b)` `\vec{AB}=(x_B-x_A;y_B-y_A)=(3-1;0+2)`
`\vec{AB}=(2;2)`
`\vec{CD}=(x_D-x_C;y_D-y_C)=(2+1;-2-4)`
`\vec{CD}=(3;-6)`
`c)` Ta có:
`\vec{AB}.\vec{CD}=|\vec{AB}.|\vec{CD}|.cos(\vec{AB};\vec{CD})`
`=>cos(\vec{AB};\vec{CD})={\vec{AB}.\vec{CD}}/{|\vec{AB}|.|\vec{CD}|}`
`={2.3+2.(-6)}/{2\sqrt{2}.3\sqrt{5}}={-6}/{6\sqrt{10}}={-1}/{\sqrt{10}}`
`=>(\vec{AB};\vec{CD})≈108°26'`
Vậy góc giữa hai vecto `\vec{AB}` và `\vec{CD}` khoảng `108°26'`