$Vi-et:x_1+x_2=1,5\\ x_1x_2=0,5\\ A=x_1^2+x_2^2\\ =(x_1+x_2)^2-2x_1x_2\\ =1,5^2-2.0,5\\ =\dfrac{5}{4}\\ B=x_1-x_2\\ =\sqrt{(x_1-x_2)^2}\\ =\sqrt{(x_1+x_2)^2-4x_1x_2}\\ =\sqrt{1,5^2-4.0,5}\\ =\dfrac{1}{2}\\ C=x_1^2-x_2^2\\ =(x_1+x_2)(x_1-x_2)\\ =\dfrac{3}{4}\\ D=x_1^3+x_2^3\\ =(x_1+x_2)^3-(3x_1^2x_2+3x_1x_2^2)\\ =(x_1+x_2)^3-3x_1x_2(x_1+x_2)\\ =1,5^3-3.0,5.1,5\\ =\dfrac{9}{8}\\ E=x_1^3-x_2^3\\ =(x_1-x_2)^3+3x_1^2x_2-3x_1x_2^2\\ =(x_1-x_2)^3+3x_1x_2(x_1-x_2)\\ =0,5^3+3.0,5.0,5(x_1-x_2=B=0,5)\\ =\dfrac{7}{8}\\ G=x_1^4-x_2^4\\ =(x_1^2+x_2^2)(x_1^2-x_2^2)\\ =A.C\\ =\dfrac{15}{16}\\ H=x_1^4+x_2^4\\ =(x_1^2+x_2^2)^2-2x_1^2x_2^2\\ =A^2-2(x_1x_2)^2\\ =\dfrac{17}{16}\\ K=x_1^6+x_2^6\\ =(x_1^2+x_2^2)^3-3x_1^2x_2^2(x_1^2+x_2^2)\\ =A^3-3.(x_1x_2)^2.A\\ =\dfrac{65}{64}\\ N=x_1^6-x_2^6\\ =(x_1^3+x_2^3)(x_1^3-x_2^3)\\ =D.E\\ =\dfrac{63}{64}\\ I=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\ =\dfrac{x_1+x_2}{x_1x_2}\\ =3\\ M=\dfrac{1-x_1}{x_1}+\dfrac{1-x_2}{x_2}\\ =\dfrac{1}{x_1}+\dfrac{1}{x_2}-2\\ =I-2\\ =1\\ R=\dfrac{x_1}{x_1+1}+\dfrac{x_2}{x_2+1}\\ =\dfrac{x_1(x_2+1)+x_2(x_1+1)}{(x_1+1)(x_2+1)}\\ =\dfrac{2x_1x_2+x_1+x_2}{x_1x_2+x_1+x_2+1}\\ =\dfrac{5}{6}\\ S=\sqrt{x_1}+\sqrt{x_2}\\ =\sqrt{(\sqrt{x_1}+\sqrt{x_2})^2}\\ =\sqrt{x_1+x_2+2\sqrt{x_1x_2}}\\ =\dfrac{2+\sqrt{2}}{2}\\ Q=x_1\sqrt{x_1}+x_2\sqrt{x_2}\\ =\sqrt{x_1}^3+\sqrt{x_2}^3\\ =(\sqrt{x_1}+\sqrt{x_2})^3-3\sqrt{x_1}\sqrt{x_2}(\sqrt{x_1}+\sqrt{x_2})\\ =S^3-3.\sqrt{0,5}.S\\ =\dfrac{4+\sqrt{2}}{4}\\ P=\sqrt{x_1}-\sqrt{x_2}\\ =\sqrt{(\sqrt{x_1}-\sqrt{x_2})^2}\\ =\sqrt{x_1+x_2-2\sqrt{x_1x_2}}\\ =\sqrt{1,5-2\sqrt{0,5}}\\ =\dfrac{2-\sqrt{2}}{2}\\ U=x_1\sqrt{x_1}-x_2\sqrt{x_2}\\ =\sqrt{x_1}^3-\sqrt{x_2}^3\\ =(\sqrt{x_1}-\sqrt{x_2})^3+3\sqrt{x_1}\sqrt{x_2}(\sqrt{x_1}-\sqrt{x_2})\\ =P^3+3.\sqrt{0,5}.P\\ =\dfrac{4-\sqrt{2}}{4}\\ X=x_1\sqrt{x_2}-x_2\sqrt{x_1}\\ =\sqrt{x_1x_2}(\sqrt{x_1}-\sqrt{x_2})\\ =\sqrt{0,5}P\\ =\dfrac{-1+\sqrt{2}}{2}$