` a) /x+5/=6`
\(\left[ \begin{array}{l}x+5=-6\\x+5=6\end{array} \right.\)
\(\left[ \begin{array}{l}x=-6-5 \\x=6-5\end{array} \right.\)
\(\left[ \begin{array}{l}x=-11\\x=1\end{array} \right.\)
`b) /2x-1/-2^2=2016^0.(-2)^2`
` /2x-1/ -4=1.4`
` / 2x-1/ -4=4`
`/2x-1/ = 4+4`
`/2x-1/ = 8`
\(\left[ \begin{array}{l}2x-1=8\\2x-1=-8\end{array} \right.\)
\(\left[ \begin{array}{l}2x=8+1\\2x=-8\+1\end{array} \right.
\(\left[ \begin{array}{l}2x=9\\2x=-7\end{array} \right.\) +1\end{array} \right.\)
\(\left[ \begin{array}{l}x=9:2\\x=-7:2\end{array} \right.\)
\(\left[ \begin{array}{l}x=4,5\\x=-3,5\end{array} \right.\)
Mà ` x∈ Z `
Vậy `x∈∅`